Добрый день!
Поделитесь своей новостью и мы с радостью
опубликуем ее!
Авторизация
Чтобы писать комментарии, вы должны залогиниться.
Зайдите через любую из соцсетей, которой вы
пользуетесь.
 
-18 °C56.7669.63
АИ-92 38,40 АИ-95 40,90
Отправка сообщения об ошибке

«Парадокс двух конвертов» — жадность против интуиции

21 августа 2010
00
«Парадокс двух конвертов» — жадность против интуиции
Источник фото: -

Двое исследователей из Австралии нашли перспективный подход к 80-летней загадке - "Парадоксу (проблеме) двух конвертов». Объяснение парадокса выбора может иметь последствия для массы теоретических и прикладных областей: от наглядного понимания некоторых парадоксов термодинамики и оптимизации работы технических систем до улучшения электронных схем и составления победной стратегии игры на фондовом рынке.

Называется эта загадка "Парадокс (проблема) двух конвертов". В различных вариациях и формулировках она известна математикам с 1930 года, хотя именно в облике двух конвертов была описана только в конце 1980-х.
Итак, играем. Вам предлагаются два конверта с деньгами (взвешивать, ощупывать и просвечивать их, понятно, нельзя). Вы знаете только, что в одном из них содержится сумма ровно вдвое большая, чем во втором, но в каком и какие именно суммы — совершенно неизвестно. Вам позволено открыть любой конверт на выбор и взглянуть на деньги в нём. После чего вы должны выбрать — взять себе этот конверт или обменять его на второй (уже не глядя).
Вопрос — как вам поступить, чтобы выиграть (то есть получить большую сумму денег)? Кажется, что шанс на выигрыш и проигрыш всегда одинаков (50{2c9f5a9acbd0926bbe8a0d926aa2950b908768febc48b35b0937e3e268547932}) вне зависимости от того, оставите ли вы себе открытый конверт или возьмёте вместо него второй. Ведь вероятность нахождения большей суммы в конверте A изначально такая же, как вероятность, что более внушительные деньги лежат в конверте B. И открытие одного из конвертов (A) ничего не говорит вам о том — видите вы наибольшую или наименьшую сумму из двух предложенных. Однако вычисление средней ожидаемой "стоимости" второго конверта говорит об ином.
Допустим, вы увидели $10. Стало быть, в другом конверте лежат либо $5, либо $20 с вероятностью 50 на 50. По теории вероятности средневзвешенная сумма в конверте B равна: 0,5 х $5 + 0,5 х $20 = $12,5. Разумеется, открыв альтернативный конверт, вы увидите не эту сумму, а либо 20, либо 5 долларов, просто по условиям игры. Но 12,5 — такова (по вычислениям), как кажется, будет средняя сумма выигрыша на кон при проведении достаточно большого числа раундов, если вы всегда будете менять конверты.
И этот результат не зависит от первоначальной суммы денег. Ведь в разных раундах могут использоваться разные пары (10 и 20, 120 и 60, 20 и 40, 120 и 240 и так далее). То есть в общем виде, если в конверте А лежит сумма С, то статистически ожидаемая сумма в конверте B составит 0,5 х С/2 + 0,5 х 2С = 5/4 С.
Таким образом, теория говорит, всегда выгодно менять первоначальный свой выбор (12,5 больше 10), хотя в отдельных раундах вы будете проигрывать. Но против такого вывода восстаёт интуиция, которая просто кричит о принципиальном равенстве конвертов. Ведь поменяв их, вы можете начать все рассуждения сначала (не открывая второй) и поменять снова.
На разрешение данного парадокса не один раз претендовали различные учёные. Более того, идут даже споры о том, как понимать — в чём тут заключается сам парадокс. Но математическое сообщество до сих пор не пришло к консенсусу, так что задача осталась открытой.
Теперь же свою разгадку (вернее, подход вплотную к её окончательному разрешению) и своё видение подводных камней данной проблемы предложили Марк Макдоннел из университета Южной Австралии и Дерек Эбботт из университета Аделаиды. Не расставив ещё всех точек над i, эти исследователи, как они считают, поняли, в чём заключалась принципиальная ошибка предшественников.
Сам Дерек (ключевая фигура в данном деле) признаёт, что первый намёк на решение парадокса возник не у него, а у профессора из Стэнфорда Томаса Ковера, признанного специалиста по теории информации и статистике. В 2003 году Эбботт работал в Британии (кстати, на своей родине). И вот как-то, обедая вместе с Ковером, он обсуждал с ним загадку двух конвертов. Томас и предложил оригинальную стратегию выигрыша, превосходящую в эффективности даже правило "всегда меняй конверты".
Заключается она в следующем. Нужно менять или не менять конверты в каждом заходе случайным образом, но с вероятностью, которая зависит от суммы, увиденной в первом конверте. То есть чем меньше сумма в конверте А, тем с большей вероятностью следует сменить конверт и наоборот, несколько большая сумма в А говорит о том, что скорее следует оставить первый конверт себе.
Тогда, в 2003-м, Дерек посчитал идею своего коллеги бредом и отказался продумывать такую стратегию. И учёного можно понять: рассудите сами, увиденная сумма не говорит человеку ровным счётом ничего о намерении, условно, ведущего (который раскладывает деньги), ведь игрок не знает — в каком вообще диапазоне играет его оппонент. Может быть, от 10 центов до 100 долларов, а может, от 5 долларов до ста миллионов. И увиденные, к примеру, однажды $25 равнозначно могут (в рамках всей партии) оказаться и сущей мелочью, и самой большой поставленной на кон суммой. И оттого неясно — стоит ли менять конверт в данном раунде игры или нет.
Однако, раскинув мозгами, Эбботт увидел за "стратегией Ковера" (так австралийские математики и назвали данный приём) глубокий философский и даже физический смысл. "Видимый парадокс возник потому, что нельзя избавиться от ощущения, что открытие конверта и наблюдение $10 на самом деле ещё не говорит вам ничего. И поэтому казалось странным, что ожидаемое значение вашего выигрыша в случае смены конверта составляет $12,5, — пояснил Эбботт. — Но мы объясняем этот казус с точки зрения нарушения симметрии. До открытия конвертов ситуация является симметричной, поэтому не имеет значения, будете вы менять потом конверт или нет. Однако после того как вы открываете конверт и используете стратегию Ковера, вы нарушаете симметрию (сразу после открытия конверта А оба конверта уже не равноценны), а затем обмен конвертов позволяет вам получить выгоду в долгосрочном плане (при большом числе заходов)".
Ныне свыше 20 миллионов компьютерных симуляций, проведённых Макдоннелом и Эбботтом, показали, что стратегия Ковера позволяет получить больше денег в игре с конвертами, чем простой обмен. А ещё, открыли австралийские учёные, предопределённый обмен, когда игрок выбирает альтернативный конверт только в том случае, если увиденная в первом сумма меньше заранее и наугад выбранного им самим (игроком) значения, тоже работает. И это так же противоинтуитивно, поскольку о минимальной планке "переключения" знает игрок, но не те, кто кладёт деньги в конверты.
И здесь пора перейти к третьей аналогии — из области финансов. "Volatility pumping" — "Накачка волатильности". Это не мифическая "золотая" программа для игры на бирже, но упрощённая модель, показывающая некоторые полезные особенности выигрышной стратегии игры с акциями (товарами, облигациями и прочим).
Понятно, что если игрок располагает информацией о приобретаемых финансовых инструментах (состояние компании, судебные дела против её менеджеров, урожай апельсинов в этом году или открытие нового месторождения нефти), он может составлять свой портфель осознанно. Но если ему не известно ничего, кроме текущей цены акции (или иного приобретения), и того, куда цена сейчас движется? Ни того, будет ли цена ещё падать, или позже начнётся рост? Ни того — является ли нынешняя цена максимальной, минимальной или позже будет огромный провал.
Как это похоже на выбор из двух конвертов: больше во втором сумма, чем та, что вы держите в руках, или меньше? "Насос волатильности" предполагает достаточно хаотичную куплю-продажу активов с небольшим лагом (купили дешевле — продали дороже), без всякого беспокойства о том, получили ли вы в данный момент самую большую выгоду от сделки или упустили шанс стать ещё богаче. И это очень похоже на случайную смену конвертов с некоторым "градиентом" в зависимости от величины наблюдаемой суммы (опять стратегия Ковера).

Парадокс конвертов губит природную симметрию случая
Рекорд с чистого листа: бумага сдаётся 12 раз
Треугольные моря готовят инженерам спиральные достижения

Нашли ошибку в статье?
Выделите текст и нажмите
Ctrl+Enter, чтобы рассказать нам